
Acta Cryst. (2002). A58, 441±447 Johnston et al. � Hybrid Monte Carlo method 441

research papers

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 12 February 2002

Accepted 20 May 2002

# 2002 International Union of Crystallography

Printed in Great Britain ± all rights reserved

A hybrid Monte Carlo method for crystal structure
determination from powder diffraction data

John C. Johnston, William I. F. David, Anders J. Markvardsen* and

Kenneth Shankland

ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX, England. Correspondence

e-mail: a.j.markvardsen@rl.ac.uk

A hybrid Monte Carlo algorithm for crystal structure determination from

powder diffraction data is presented. The algorithm combines the key

components of molecular dynamics and Monte Carlo simulations to achieve

ef®cient sampling of phase space, allowing the crystal structure of capsaicin to be

determined from powder diffraction data more effectively than by a simulated-

annealing approach. The implementation of the algorithm, the choice of the

simulation parameters and the performance of the algorithm are discussed.

1. Introduction

Global optimization methods of crystal structure determina-

tion from powder diffraction data have found particular utility

with molecular organic crystal structures, where the known

chemical connectivity of the molecule under study can be

easily converted into trial three-dimensional crystal structures.

The molecule under study is ®rst parameterized as a series

of rigid units connected by variable torsion angles, a task

conveniently achieved by the use of internal coordinates.

Thereafter, the position, orientation and conformation of the

molecule within the unit cell of the crystal structure are

optimized against some observed data. It is assumed that the

correct crystal structure corresponds to the global minimum

of some function relating the trial crystal structure to the

observed data.

In the majority of cases, the level of prior chemical

knowledge is such that the input molecular model is accurate

and the correctness of a trial crystal structure produced in the

global optimization search can be assessed in a meaningful

way. This assessment is normally performed by comparing

observed and calculated diffraction data, using a least-squares

®gure of merit. That is, either as the weighted sum of squared

deviations between the observed (yobs
i ) and calculated (yi)

diffraction patterns using �2
profile �

P
i w�yobs

i ÿ yi�2 (Young,

1993) or as the weighted sum of squared deviations between

observed and calculated integrated intensities of the diffrac-

tion pattern:

�2 �P
h

P
k

��Ih ÿ cjFhj2��Vÿ1�hk�Ik ÿ cjFkj2��; �1�

where Ih and Ik are Lorentz±polarization-corrected extracted

integrated intensities from a Pawley re®nement (Pawley, 1981)

of the diffraction pattern, Vhk is the covariance matrix from

the Pawley re®nement, c is a scale factor, and |Fh| and |Fk| are

the structure-factor magnitudes calculated from the trial

structure. Alternatively, the correlated integrated intensities

may be obtained using the iterative Le Bail method (Le Bail et

al., 1988; Pagola et al., 2000; David et al., 2002). For cases

where the input molecular model is a poor approximation to

the contents of the crystal structure, a maximum-likelihood

®gure of merit has been found to be an effective alternative to

the �2 ®gure of merit mentioned above (Markvardsen et al.,

2002).

A number of different global optimization strategies have

been applied successfully to the problem of locating the global

minimum in �2 space (for a summary, see David et al., 2002).

However, many other algorithms from different research

areas (see, for example, Floudas et al., 1999) remain to be

evaluated in respect of this particular crystallographic

problem. In this paper, we investigate a hybrid Monte Carlo

(HMC) method that combines the best features of Monte

Carlo (MC) simulations and molecular dynamics (MD) in a

single algorithm. The HMC method was introduced for

numerical simulation in lattice ®eld theory (Duane et al., 1987)

and has become widely used for lattice quantum-chromo-

dynamic computations with dynamical fermions (see, for

instance, Joo et al., 2000). HMC has been applied to a variety

of different problems including the simulation of polymer

chains (IrbaÈck, 1994) and the conformational analysis of RNA

(Fischer et al., 1999).

2. The hybrid Monte Carlo method

The starting point in picturing how the HMC method can be

utilized as a global optimization tool is to consider a single

postulated crystal structure as a hypothetical particle in a

hyperspace de®ned by a set of structural parameters. In the

case of a molecular crystal structure solution, these param-

eters are the six external degrees of freedom (position and

orientation of the molecule) and the internal molecular

conformational degrees of freedom associated with torsion

angles whose values cannot be speci®ed in advance. The �2

goodness-of-®t function, given by (1), which relates observed
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and calculated diffraction data, is taken to be the potential

energy that the hypothetical particle possesses. The particle is

assigned a kinetic energy by randomly selecting the compo-

nents of its momentum from a Gaussian thermal distribution

at temperature T (de®ned in �2 units) and assigning these

components to each of the N structural parameters. The

particle moves over the �2 hypersurface, following a trajectory

determined by its initial momentum and the gradient of the �2

hypersurface. As the total energy of the system must be

conserved throughout a particular particle trajectory,

promising structures (i.e. with low values of �2) therefore have

low potential energy and high kinetic energy. It is this high

kinetic energy component that allows the particle to move

uphill and thus escape from local minima.

The HMC algorithm is expressed mathematically as follows.

Choose a point, r, in the structure parameter space. The

coordinates, ri �i � 1; . . . ;N�, of the point correspond to the

positional, orientational and variable torsional parameter

values within the crystal structure and the momentum

components are denoted pi � mivi �i � 1; . . . ;N�. According

to classical mechanics, the total energy, the Hamiltonian H (i.e.

the sum of the kinetic energy, K, and the potential energy, U)

is conserved. The Hamiltonian, H, at time t, is written as

H�t� � 1
2

PN
i�1

miv
2
i �t� � U�r�t��: �2�

In principle, the mass associated with each parameter may be

different but in the present implementation each mass is set to

unity such that the momentum is numerically identical to the

velocity, p = v. The potential energy is given by �2 and so the

energy of the hypothetical particle that travels over the �2

hypersurface can be rewritten as

H�t� � 1
2

PN
i�1

p2
i �t� � �2�r�t��; �3�

where the Hamiltonian is expressed in terms of the position

and momentum of the particle. Hamilton's equations of

motion are given by

@ri=@t � @H=@pi � pi; i � 1; . . . ;N; �4�
and

@pi=@t � ÿ@H=@ri � ÿ@�2=@ri; i � 1; . . . ;N: �5�
The initial momentum components, pi�t � 0�, are sampled

randomly from a Gaussian thermal distribution at tempera-

ture T, where T is expressed in �2 units, i.e. for each compo-

nent,

prob�pi� � exp�ÿK�pi�=T�=�2��1=2: �6�
The temperature is very important for the effectiveness of the

algorithm and its choice is discussed further in x6. The

trajectory of the particle is calculated using a leap-frog al-

gorithm (Hockney, 1970; Leach, 1996) where the position at

one time step is used to calculate the momentum at the next

and so on. The precise leap-frog algorithm used in this paper is

ri�t ��t� � ri�t� ��t pi�t � 1
2 �t� �7�

pi�t � 3
2�t� � pi�t � 1

2�t� ÿ�t
@�2

@ri

����
�t��t�

: �8�

The momentum components, pi�t � 1
2�t�, are calculated from

the initial Gaussian sample, pi�t � 0�, using the equation

pi�t � 1
2�t� � pi�t � 0� ÿ 1

2�t
@�2

@ri

����
�t�0�

: �9�

Given that ®nite step sizes are used when calculating the

trajectory across the parameter space, systematic errors

inevitably occur and can accumulate within the system as the

simulation progresses. Fig. 1 shows both the total energy and

the potential energy throughout a single trajectory of 100 MD

steps for the capsaicin example discussed in x4. As expected,

the trajectory over the hypersurface involves numerous

downhill and uphill moves. The total energy ¯uctuates

considerably around the relatively deep local minimum found

after 40 moves, highlighting the problems of performing MD

with ®nite step sizes. With smaller steps, these ¯uctuations in

the total energy would be reduced, but so would the overall

distance travelled by the particle and thus the extent of the

parameter space sampled would also be reduced, decreasing

the ef®ciency of the search. The leap-frog algorithm is at its

least exact when the potential energy (i.e. the �2) is changing

most rapidly. If no corrections were applied, then the total

energy would become increasingly incorrect and the sampling

of the parameter space would not follow a true MD path. In

the HMC approach, this problem is dealt with by comparing

the initial and ®nal total energy after a number of MD steps

and insisting upon detailed balance with respect to sampling of

a canonical ensemble. Thus, after a speci®ed number of MD

steps, the trajectory is accepted if the ®nal total energy, EM, is

lower than the initial total energy, E0. If EM is higher than E0

(as is the case for the example shown in Fig. 1), then the

trajectory is accepted with a Boltzmann probability,

Figure 1
The potential energy (correlated integrated intensities �2) and total
energy (kinetic energy plus potential energy) evaluated over a single MD
trajectory during the crystal structure solution of capsaicin. The initial
total energy is shown as a dotted line in order to highlight the total energy
¯uctuations arising from the ®nite MD step size.



prob�accept� � exp�ÿ�EM ÿ E0�=T�: �10�

If a trajectory is accepted, then new momentum components

are chosen randomly from a Gaussian thermal distribution

and the next trajectory begins at the endpoint of the accepted

trajectory. If the trajectory is rejected, then the new trajectory

begins at the same starting point as the rejected trajectory,

again with new momentum components chosen randomly

from the Gaussian thermal distribution. Determination of the

`correct' step size in the hypothetical time frame is clearly

important and this is performed at the beginning of the HMC

process. The initial time step is large but is dynamically

reduced in size until ~95% of the trajectories are accepted.

This scheme represents a reasonable compromise between

accuracy and ef®ciency.

The HMC approach thus combines, in one algorithm, the

best features of MD and MC simulations. The MD component

uses Hamilton's equations of motion to move quickly through

parameter space whilst, in the MC component, a Metropolis

criterion ensures detailed balance and the momentum

components take on the role of the random variables.

Denoting the number of MD steps within a given trajectory by

NMD and the number of MC steps (Metropolis evaluations) by

NMC, then a HMC run consists of NMC Monte Carlo steps each

containing NMD molecular dynamics steps. The simulation

runs until the �2 goodness of ®t is lower than a predetermined
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Figure 2
(a) A simple periodic potential energy function constructed over a square cell. The maximum value of the potential energy is 10, with uniform contour
levels shown at 1; 2; 3; . . . ; 9. The function has three minima with values 0, 3 and 4.9 at positions (70, 50), (20, 83) and (35, 40), respectively. (b) A
simulated-annealing solution for the test function shown in (a). The SA run consists of 1000 moves and it rapidly locates the global minimum. The ®gure
highlights the random-walk nature of the SA algorithm. (c) A molecular dynamics solution for the test function shown in (a). The MD run consists of
1000 steps and all three minima are visited many times. The smooth trajectory is a consequence of the deterministic nature of MD equations of motion.
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value or the maximum number of �2 evaluations (equal to

NMC � NMD) is exceeded. The HMC algorithm presented in

this section is referred to as `standard' HMC, as it provides an

effective algorithm for sampling a canonical ensemble at

constant temperature. The HMC method has also been

modi®ed to sample other distributions such as the multi-

canonical ensemble (Arnold et al., 2000) and the mixed-

canonical ensemble (Fischer et al., 1999). The HMC method

may be further modi®ed by combining it with a simulated-

annealing (SA) strategy or a form of tempering such as

simulated or parallel tempering (see, for instance, Boyd, 1998,

and references therein).

3. Molecular dynamics compared with simulated
annealing

The essential difference between a MD run and a SA run is

illustrated for the simple case of locating the global minimum

of the function shown in Fig. 2(a). The `directed' random walk

of the SA algorithm is apparent in Fig. 2(b). The algorithm has

the ability to climb and cross the �2 hills in its search for the

low-lying �2 basins, eventually settling in the global minimum

as the overall temperature of the system is lowered. In

contrast, the smooth trajectory-like nature of a MD run is

shown in Fig. 2(c). Given an appropriate level of kinetic

energy, the algorithm traces a smooth path throughout the

function space, sampling the function minima along its

trajectory. The choice of the `appropriate level of kinetic

energy' is discussed in more detail in x6.

4. HMC implementation for crystal structure
determination

The HMC algorithm outlined in x2 was implemented in a C++

computer program designed to solve crystal structures from

powder diffraction data using an agreement factor as speci®ed

in (1). The performance of the algorithm was benchmarked

against the SA algorithm implemented in the DASH computer

program (David et al., 2001), which utilizes the same agree-

ment factor. Unlike simulated annealing, molecular dynamics

requires the calculation of derivatives and this overhead

means that each �2 evaluation for the HMC takes approxi-

mately twice as long as its SA counterpart.

The test crystal structure selected was that of capsaicin (Fig.

3), P21=c, a = 12.2234, b = 14.7900, c = 9.4691 AÊ , � = 93.9754�,
T = 100 K. Capsaicin was one of the early test-case structures

for the SA algorithm in DASH (David et al., 1998) and

remains a challenging problem for global optimization

methods, with 15 degrees of freedom and only C, H, N and O

atoms present.

An internal-coordinate description of the capsaicin mole-

cule was generated using standard bond lengths, bond angles

and bond torsions. The diffraction data (� = 0.6528 AÊ ) used

had previously been collected at 100 K from a 0.7 mm capil-

lary ®lled with capsaicin powder and mounted on the

diffractometer at BM16 of the ESRF in Grenoble (David et al.,

1998). The data were Pawley-®tted over the range 2.7±22.5� 2�
(� 1.7 AÊ ), in order to extract 379 correlated integrated

intensities, resulting in a �2
profile value of 13.1.

Figure 3
The molecular structure of capsaicin. The arrows denote bonds for which
torsion angles cannot be assigned correctly in advance of a structure
determination.

Figure 4
The crystal structure corresponding to HMC solution No. 10 (thin lines),
superimposed upon the single-crystal structure of capsaicin (bold lines).

Table 1
The lowest correlated integrated intensities �2 values obtained during
each of the SA and HMC runs.

Column 3 lists the �2 values obtained following conjugate-gradient
minimization of the HMC determined crystal structures.

Run No. �2 (SA) �2 (HMC) �2 (CGM)

1 130.4 88.2 85.7
2 214.6 89.0 84.1
3 118.2 90.9 85.4
4 85.0 90.0 82.5
5 85.6 141.3 134.7
6 130.0 88.3 82.9
7 168.7 87.1 82.2
8 81.5 236.2 228.6
9 82.8 87.7 83.9

10 223.4 87.7 81.9
11 201.0 87.4 84.6
12 134.0 267.3 267.1
13 130.8 182.7 177.1
14 115.5 88.6 83.5
15 167.7 181.2 175.9
16 150.9 86.1 83.5
17 135.5 87.7 82.4
18 142.8 87.3 82.0
19 148.1 90.6 83.7
20 107.4 89.5 86.8



Twenty DASH structure-solution runs were performed

using default values for the initial system temperature and the

cooling rate. All runs were set to terminate after a maximum

of 3 � 106 SA moves. Twenty HMC runs were then performed

using values of T = 10, NMD = 100, NMC = 10000 and an

acceptance rate of ~95%. The choice of T is discussed in detail

in x6. At the end of each of the 20 HMC runs, a conjugate-

gradient minimization (CGM) of the structure was invoked in

the same parameter and data space. Both programs were run

on an 800 MHz Pentium-III-based PC running Windows NT

Version 4.

5. Results

5.1. Success rates for each method

The results of the SA and HMC runs (Table 1) show that

both methods were able to solve the crystal structure of

capsaicin repeatedly. The correct solutions are easily identi®ed

by their low (< 90) correlated integrated intensities �2 values

and Fig. 4 shows the excellent agreement between one such

HMC solution and the known single-crystal structure. In each

case where �2 < 90, the structure was compared with the

single-crystal structure and con®rmed as solved to a good

degree of accuracy. Using this �2 value as a cut-off point, the

success rates in obtaining structure solutions for capsaicin

were 20% for the SA runs and 75% for the HMC runs.

Including SA solutions 3, 14 and 20, which also show

convincing agreement with the single-crystal structure,

increases the overall SA success rate to 35%.

5.2. Efficiency of the methods

Fig. 5(a) shows a typical `ridge and cliff' plot of �2 versus the

number of �2 evaluations for the 20 HMC runs, whilst Fig. 5(b)

shows an expanded plot for the ®rst 100000 evaluations.
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Figure 5
(a) A plot of the best �2 values versus the number of �2 evaluations for
the 20 HMC runs. (b) A plot of the ®rst 100 000 evaluations for the runs
shown in (a).

Figure 6
(a) A plot of the best �2 values versus the number of �2 evaluations for
the 20 SA runs. (b) A plot of the ®rst 1000 000 evaluations for the runs
shown in (a).



research papers

446 Johnston et al. � Hybrid Monte Carlo method Acta Cryst. (2002). A58, 441±447

Correct solutions were obtained in �18000 to 1000000 �2

evaluations. This is a signi®cant gain over the �1.6 to 2.6

million �2 evaluations for the successful SA runs (Figs. 6a, b)

and the fact that eight HMC solutions were obtained in less

than 500000 evaluations serves to underline the ef®ciency of

the HMC algorithm.

6. Discussion

One of the attractive features of the HMC approach is the

simplicity of the underlying algorithm. In common with SA,

the dominant algorithmic parameter is the system temperature

and temperatures that lie far from an optimal value normally

result in failure of HMC to obtain a correct solution within a

reasonable time scale. For example, if the temperature is set

too low, the hypothetical particle has too little kinetic energy

to escape local minima. In practice, the mean kinetic energy

(hKi � 1
2NT, where N is the number of degrees of freedom) is

a more intuitive property to work with than the temperature

because of its close interrelationship with the potential energy

(�2) through the equations of motion. The choice of the

optimal mean kinetic energy has been found empirically to

correspond to the kinetic energy at which ¯uctuations in �2,

observed over a series of trajectories, are highest. This is

illustrated in Fig. 7, in which ¯uctuations in the correlated

integrated intensities �2 values obtained for the capsaicin

structure are plotted as a function of the average kinetic

energy of the system. It is a straightforward matter to calculate

this distribution via a short series of MD runs and the optimal

value of T is then ®xed for the duration of the HMC run. In

Fig. 7, the largest ¯uctuations occur at hKi � 90, indicating

that T � 10 is a good choice for this system. In marked

contrast to SA, it is not a prerequisite to decrease T further in

order to increase the probability of sampling low �2 values, as

the HMC trajectory will necessarily visit these minima.

Fig. 8(a) shows that the evolution of �2 with the total

number of MD steps possesses a very de®nite long-time-scale

structure in addition to the obvious rapid ¯uctuations. Deep

minima are very uncommon in this structure solution hyper-

space and the initial 10000 MD steps traverse regions of space

with relatively high �2 values. Shortly afterwards, over the

space of a very small number of evaluations, there is a preci-

pitous decrease in �2 followed by several smaller decreases,

two of which are shown in greater detail in Fig. 8(b). The

increased frequency of �2 ¯uctuations after the second drop

indicates that the HMC trajectory is exploring the parameter

space around the best solution. The ability of the HMC

method to `®ne tune' both the internal and external degrees of

freedom of capsaicin results in a structure that is suf®ciently

close to the global minimum that subsequent CGM brings

about only a very small further reduction in the best �2 value

(see also Table 1).

It is therefore not surprising to ®nd that the overall repro-

ducibility in the HMC solutions is very good. Fig. 9 shows an

overlay of the ®rst eight HMC solutions with �2 � 90. The

small differences between the structures highlight the extent

Figure 7
Fluctuations in �2 plotted as a function of the average kinetic energy for
the capsaicin problem. In simulated annealing, the dependence of �2

¯uctuations upon temperature takes a similar form.

Figure 8
(a) The potential energy (�2) plotted as a function of the number of �2

evaluations for the HMC structure solution of capsaicin. The dotted line
corresponds to the lowest �2 value obtained thus far. (b) An expanded
region of the plot shown in (a). The best �2 for this run was 99.0.
Subsequent CGM reduced this value to 95.2.



to which the individual structural parameters are correlated,

i.e. each structure gives essentially the same ®t to the

diffraction data despite having slightly different positions,

orientations and conformations. This is a consequence both of

the e.s.d.'s on the structure factors and the relatively low

resolution (�1.7 AÊ ) of the diffraction data.

7. Conclusions

The hybrid Monte Carlo method outlined in this paper is an

effective and ef®cient global search method for the determi-

nation of crystal structures from powder diffraction data. The

overall success rate in solving the crystal structure of capsaicin

is high for a molecule of this conformational complexity and is

signi®cantly better than that achieved with SA optimization.

In common with simulated annealing, the algorithm has a

limited number of control parameters and is thus well suited to

routine use.

We gratefully acknowledge Dr Andy Fitch of the ESRF
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Dr Norman Shankland of CrystallografX Ltd for his critical

reading of the manuscript.
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